Abstract
A highly pathogenic viral infection with several symptoms have been reported such as fever, cough, breathing difficulty, fatigue, headache, failure of taste or smell sensation, sore throat, congestion and diarrhoea in December, 2019 in Wuhan, China. In 30th January, 2020 World Health Organization (WHO) declared the outbreak of coronavirus disease to be a Public Health Emergency of global Concern. This virus is highly contagious and can be transmitted after close contact with an infected patient, and has quickly spread globally. In this pandemic, several types of drugs, non-drugs treatment, and their combination are being used to manage the coronavirus disease (COVID-19) affected patients which caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although none of them are officially recommended by any national and international committee such as U.S. Food and Drug Administration (USFDA) because the efficacy and the safety aspects of these treatments are still unidentified and extensively investigated. Different types of potential pharmacotherapy and treatments such as antimalarial, antiviral, antibiotics and many more are presently undertaking clinical-trials to prove their effectiveness in COVID-19 and some of them also showing promising results. This narrative review article summarizes some potential drugs used for the symptoms of coronavirus disease such as antivirals, antibiotics, antimalarial, anti-inflammatory and possible treatments such as neutralizing antibodies from convalescent plasma, umbilical cord mesenchymal stem cells (UC-MSCs) against SARS-CoV-2.
Keywords
License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Article Type: Review Article
J CONTEMP STUD EPIDEMIOL PUBLIC HEALTH, Volume 2, Issue 1, 2021, Article No: ep21001
https://doi.org/10.30935/jconseph/9367
Publication date: 04 Jan 2021
Article Views: 2508
Article Downloads: 1207
Open Access References How to cite this articleReferences
- Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan China: the mystery and the miracle. J Med Virol 2020; Published Online Jan 16. (doi: 10.1002/jmv.25678).
- Hui DS, I Azhar E, Madani TA, et al. The continuing 2019nCoV epidemic threat of novel coronaviruses to global health the latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis 2020; 91: 264-66. (doi: 10.1016/j.ijid.2020.01.009).
- WHO. Clinical management of severe acute respiratory infection when Novel coronavirus (nCoV) infection is suspected: interim guidance. Jan 11, 2020. Available at: https://www.who.int/internalpublicationsdetail/clinicalmanagementofsevereacuterespiratoryinfect
- Wang Q, Qiu Y, Li JY, Zhou ZJ, Liao CH, Ge XY. A unique protease cleavage site predicted in the spike protein of the novel pneumonia coronavirus (2019-nCoV) potentially related to viral transmissibility. Virologica Sinica, 2020: 1-3. (doi: 10.1007/s12250-020-00212-7).
- WHO. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. Dec 31, 2003. Available at: https://www.who.int/csr/sars/country/table2004_04_21/en/ (Accessed: 19 January 2020).
- WHO. Middle East respiratory syndrome coronavirus (MERS-CoV). November, 2019. Available at: http://www.who.int/emergencies/mers-cov/en/ (Accessed: 19 January 2020).
- Huang C, Wang Y, Li X, Ren L, Zhao J, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet, 2020; 395(10223): 497-506. (doi: 10.1016/S0140-6736(20)30183-5).
- Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA. 2020;323(18):1824-1836. (doi: 10.1001/jama.2020.6019).
- Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, evaluation and treatment coronavirus (COVID-19). In Statpearls. StatPearls Publishing. 2020.
- https://www.who.int/teams/blueprint/COVID-19
- COVID Classification of treatment types 28 April 2020, WHO R&D Blueprint COVID-19 Experimental Treatments.
- Jean SS, Lee PI, Hsueh PR. Treatment options for COVID-19: The reality and challenges. Journal of Microbiology, Immunology and Infection. 2020. (doi: 10.1016/j.jmii.2020.03.034).
- Ahn DG, Shin HJ, Kim MH, Lee S, Kim HS, Myoung J, Kim BT, Kim SJ. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). Journal of microbiology and biotechnology, 2020; 30(3): 313-24. (doi: 10.4014/jmb.2003.03011).
- Ye Q, Wang B, Mao J. The pathogenesis and treatment of theCytokine Storm'in COVID-19. Journal of infection, 2020; 80(6): 607-13. (doi: 10.1016/j.jinf.2020.03.037).
- Barlow A, Landolf KM, Barlow B, Yeung SYA, Heavner JJ, Claassen CW, Heavner MS. Review of emerging pharmacotherapy for the treatment of coronavirus disease 2019. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 2020; 40(5): 416-37. (doi: 10.1002/phar.2398).
- Pastick KA, Okafor EC, Wang F, Lofgren SM, Skipper CP, et al. Hydroxychloroquine and chloroquine for treatment of SARS-CoV-2 (COVID-19). In Open Forum Infectious Diseases (Vol. 7, No. 4, p. ofaa130). US: Oxford University Press. 2020, April. (doi: 10.1093/ofid/ofaa130).
- Malek AE, Granwehr BP, Kontoyiannis DP. Doxycycline as a potential partner of COVID-19 therapies. IDCases, 2020; 21: e00864. (doi: 10.1016/j.idcr.2020.e00864).
- Guo X, Carroll JN, Macdonald MR, Goff SP, Gao G, Irol JV. The Zinc Finger Antiviral Protein Directly Binds to Specific Viral mRNAs through the CCCH Zinc Finger Motifs. 2004; 78(23): 12781-7. (doi: 10.1128/JVI.78.23.12781).
- Fredeking TM, Zavala-castro JE, González-martínez P, Moguel-rodríguez W. Dengue Patients Treated with Doxycycline Showed Lower Mortality Associated to a Reduction in IL-6 and TNF Levels. 2015: 51-8. (doi: 10.2174/1574891X10666150410153839).
- Conforti C, Giuffrida R, Zalaudek I, Di Meo N. Doxycycline, a widely used antibiotic in dermatology with a possible anti‐inflammatory action against IL-6 in COVID-19 outbreak. Dermatologic Therapy. 2020. (doi: 10.1111/dth.13437).
- Anderson VR, Perry CM. Levofloxacin. Drugs, 2008; 68(4), 535-565. (doi: 10.2165/00003495-200868040-00011).
- Karampela I, Dalamaga M. Could Respiratory Fluoroquinolones, Levofloxacin and Moxifloxacin, Prove to be Beneficial as an Adjunct Treatment in COVID-19?. Archives of Medical Research. 2020. (doi: 10.1016/j.arcmed.2020.06.004).
- Enoki Y, Ishima Y, Tanaka R, Sato K, Kimachi K, et al. (2015). Pleiotropic effects of levofloxacin, fluoroquinolone antibiotics, against influenza virus-induced lung injury. PloS one; 10(6), p.e0130248. (doi: 10.1371/journal.pone.0130248).
- Arshad S, Kilgore P, Chaudhry ZS, Jacobsen G, Wang DD, et al. Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19. International Journal of Infectious Diseases. 2020.
- Ulrich H, Pillat MM. CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement. Stem Cell Reviews and Reports, 2020: 1-7. (doi: 10.1007/s12015-020-09976-7).
- Gautret P, Lagier JC, Parola P, Meddeb L, Sevestre J, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study. Travel medicine and infectious disease, 2020: 101663. (doi: 10.1016/j.tmaid.2020.101663).
- Choudhary R, Sharma AK. Potential use of hydroxychloroquine, ivermectin and azithromycin drugs in fighting COVID-19: trends, scope and relevance. New Microbes and New Infections, 2020: 100684. (doi: 10.1016/j.nmni.2020.100684).
- Damle B, Vourvahis M, Wang E, Leaney J, Corrigan B. Clinical Pharmacology Perspectives on the Antiviral Activity of Azithromycin and Use in COVID‐19. Clinical Pharmacology & Therapeutics. 2020. (doi: 10.1002/cpt.1857).
- Saleh M, Gabriels J, Chang D, Kim BS, Mansoor A, et al. The effect of chloroquine, hydroxychloroquine and azithromycin on the corrected QT interval in patients with SARS-CoV-2 infection. Circulation: Arrhythmia and Electrophysiology. 2020. (doi: 10.1161/CIRCEP.120.008662).
- Juurlink DN. Safety considerations with chloroquine, hydroxychloroquine and azithromycin in the management of SARS-CoV-2 infection. CMAJ, 2020; 192(17): E450-E453. (doi: 10.1503/cmaj.200528).
- Mercuro NJ, Yen CF, Shim DJ, Maher TR, McCoy CM, et al. Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for coronavirus disease 2019 (COVID-19). JAMA cardiology. 2020. (doi: 10.1001/jamacardio.2020.1834).
- Pani A, Lauriola M, Romandini A, Scaglione F. Macrolides and viral infections: focus on azithromycin in COVID-19 pathology. International Journal of Antimicrobial Agents, 2020: 106053. (doi: 10.1016/j.ijantimicag.2020.106053).
- Gbinigie K, Frie K. Should azithromycin be used to treat COVID-19? A rapid review. BJGP open. 2020. (doi: 10.3399/bjgpopen20X101094).
- Kaul D. An overview of coronaviruses including the SARS-2 coronavirus-Molecular biology, epidemiology and clinical implications. Current Medicine Research and Practice. 2020. (doi: 10.1016/j.cmrp.2020.04.001).
- Gautret P, Lagier JC, Parola P, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International journal of antimicrobial agents, 2020: 105949. (doi: 10.1016/j.ijantimicag.2020.105949).
- Molina JM, Delaugerre C, Le Goff J, Mela-Lima B, Ponscarme D, Goldwirt L, de Castro N. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect, 2020; 50(384): 30085-8. (doi: 10.1016/j.medmal.2020.03.006).
- Wang Y, Jiang Y, Zhao X, Weiqing HE. Shenyang Fuyang Pharmaceutical Technology Co Ltd, 2019. Use of carrimycin in Mycobacterium tuberculosis infection resistance. U.S. Patent Application 16/067,327.
- Lima WG, Brito JCM, Overhage J, da Cruz Nizer WS. The potential of drug repositioning as a short-term strategy for the control and treatment of COVID-19 (SARS-CoV-2): a systematic review. Archives of Virology, 2020: 1-9. (doi: 10.1007/s00705-020-04693-5).
- ClinicalTrials.gov. The clinical study of carrimycin in treated patients with COVID-19. Available at: https://clinicaltrials.gov/ct2/show/NCT04286503
- Baron SA, Devaux C, Colson P, Raoult D, Rolain JM. Teicoplanin: an alternative drug for the treatment of coronavirus COVID-19. Int J Antimicrob Agents, 2020: 105944(10.1016). (doi: 10.1016/j.ijantimicag.2020.105944).
- Yousefi B, Valizadeh S, Ghaffari H, Vahedi A, Karbalaei M, Eslami M. A global treatments for coronaviruses including COVID-19. Journal of Cellular Physiology. 2020. (doi: 10.1002/jcp.29785).
- Pryka RD, Rodvold KA, Rotschafer JC. Teicoplanin: an investigational glycopeptide antibiotic. Clinical pharmacy, 1988; 7(9): 647-58.
- Zhang J, Ma X, Yu F, Liu J, Zou F, Pan T, Zhang H. Teicoplanin potently blocks the cell entry of 2019-nCoV. BioRxiv. 2020. (doi: 10.1101/2020.02.05.935387).
- Davey PG, Williams AH. A review of the safety profile of teicoplanin. Journal of Antimicrobial Chemotherapy, 1991; 27(suppl_B): 69-73. (doi: 10.1093/jac/27.suppl_B.69).
- Lu CC, Chen MY, Chang YL. Potential therapeutic agents against COVID-19: What we know so far. Journal of the Chinese Medical Association. 2020. (doi: 10.1097/JCMA.0000000000000318).
- Yoon JJ, Toots M, Lee S, Lee ME, Ludeke B, et al. Orally efficacious broad-spectrum ribonucleoside analog inhibitor of influenza and respiratory syncytial viruses. Antimicrobial agents and chemotherapy, 2018 Aug 1; 62(8). (doi: 10.1128/AAC.00766-18).
- Shiraki K, Daikoku T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacology & therapeutics, 2020: 107512. (doi: 10.1016/j.pharmthera.2020.107512).
- Rossignol JF. Nitazoxanide: a first-in-class broad-spectrum antiviral agent. Antiviral research, 2014; 110: 94-103. (doi: 10.1016/j.antiviral.2014.07.014).
- Rossignol JF. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. Journal of infection and public health, 2016; 9(3): 227-30. (doi: 10.1016/j.jiph.2016.04.001).
- Pepperrell T, Pilkington V, Owen A, Wang J, Hill AM. Review of safety and minimum pricing of nitazoxanide for potential treatment of COVID-19. Journal of Virus Eradication, 2020; 6(2): 52. (doi: 10.1016/S2055-6640(20)30017-0).
- Rajoli RK, Pertinez H, Arshad U, Box H, Tatham L, et al. Dose prediction for repurposing nitazoxanide in SARS-CoV-2 treatment or chemoprophylaxis. medRxiv. 2020. (doi: 10.22541/au.158938595.50403411).
- Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, et al. Compassionate use of remdesivir for patients with severe COVID-19. New England Journal of Medicine, 2020; 382(24): 2327-36. (doi: 10.1056/NEJMoa2007016).
- Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, et al. Remdesivir for the treatment of COVID-19—preliminary report. New England Journal of Medicine. 2020.
- Wang Y, Zhang D, Du G, Du R, Zhao J, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. The Lancet. 2020.
- Samuel CE. Antiviral actions of interferons. Clinical microbiology reviews, 2001; 14(4): 778-809. (doi: 10.1128/CMR.14.4.778-809.2001).
- Liu YJ. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol., 2005; 23: 275-306. (doi: 10.1146/annurev.immunol.23.021704.115633).
- Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host defenses. Annual review of immunology, 2014; 32: 513-45. (doi: 10.1146/annurev-immunol-032713-120231).
- Totura AL, Baric RS. SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon. Current opinion in virology, 2012; 2(3): 264-75. (doi: 10.1016/j.coviro.2012.04.004).
- Jakimovski D, Kolb C, Ramanathan M, Zivadinov R, Weinstock-Guttman B. Interferon β for multiple sclerosis. Cold Spring Harbor perspectives in medicine, 2018; 8(11): a032003. (doi: 10.1101/cshperspect.a032003).
- Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoS Med, 2006; 3(9): e343. (doi: 10.1371/journal.pmed.0030343).
- Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges. International journal of antimicrobial agents, 2020: 105924. (doi: 10.1016/j.ijantimicag.2020.105924).
- Channappanavar R, Fehr AR, Zheng J, Wohlford-Lenane C, Abrahante JE, et al. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. The Journal of clinical investigation, 2019; 129(9). (doi: 10.1172/JCI126363).
- Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. The Journal of Heart and Lung Transplantation, 2020; 39(5): 405. (doi: 10.1016/j.healun.2020.03.012).
- Zhang W, Zhao Y, Zhang F, Wang Q, Li T, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The experience of clinical immunologists from China. Clinical Immunology, 2020: 108393. (doi: 10.1016/j.clim.2020.108393).
- Sallard E, Lescure FX, Yazdanpanah Y, Mentre F, Peiffer-Smadja N, et al. Type 1 interferons as a potential treatment against COVID-19. Antiviral Research, 2020: 104791. (doi: 10.1016/j.antiviral.2020.104791).
- Boriskin YS, Leneva IA, Pecheur EI, Polyak SJ. Arbidol: a broad-spectrum antiviral compound that blocks viral fusion. Current medicinal chemistry, 2008; 15(10): 997-1005. (doi: 10.2174/092986708784049658).
- Lim J, Jeon S, Shin HY, Kim MJ, et al. Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: the application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. Journal of Korean medical science, 2020; 35(6). (doi: 10.3346/jkms.2020.35.e88).
- Wang Z, Chen X, Lu Y, Chen, F, Zhang W. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Bioscience trends. 2020. (doi: 10.5582/bst.2020.01030).
- Zhu Z, Lu Z, Xu T, Chen C, Yang G, Zha T, Xue Y. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. Journal of Infection. 2020. (doi: 10.1016/j.jinf.2020.03.060).
- Musarrat F, Chouljenko V, Dahal A, Nabi R, Chouljenko T, Jois SD, Kousoulas KG. The anti‐HIV Drug Nelfinavir Mesylate (Viracept) is a Potent Inhibitor of Cell Fusion Caused by the SARS-CoV-2 Spike (S) Glycoprotein Warranting further Evaluation as an Antiviral against COVID-19 infections. Journal of medical virology. 2020. (doi: 10.1101/2020.04.24.060376).
- Petit CM, Chouljenko VN, Iyer A, Colgrove R, Farzan M, Knipe DM, Kousoulas KG. Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion. Virology, 2007; 360(2): 264-74. (doi: 10.1016/j.virol.2006.10.034).
- Petit CM, Melancon JM, Chouljenko VN, Colgrove R, Farzan M, Knipe DM, Kousoulas KG. Genetic analysis of the SARS-coronavirus spike glycoprotein functional domains involved in cell-surface expression and cell-to-cell fusion. Virology, 2005; 341(2): 215-230. (doi: 10.1016/j.virol.2005.06.046).
- Cvetkovic RS, Goa KL. Lopinavir/ritonavir. Drugs, 2003; 63(8): 769-802. (doi: 10.2165/00003495-200363080-00004).
- Chu CM, Cheng VCC, Hung IFN, Wong MML, Chan KH, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax, 2004; 59(3): 252-6. (doi: 10.1136/thorax.2003.012658).
- Dalerba P, Levin B, Thompson JL. A Trial of Lopinavir-Ritonavir in COVID-19. J Heart Lung Transplant. 2020.
- AbbVie Inc. Kaletra (lopinavir and ritonavir) package insert. North Chicago, IL: AbbVie Inc; 2016.
- Vaddi K, Sarlis NJ, Gupta V. Ruxolitinib, an oral JAK1 and JAK2 inhibitor, in myelofibrosis. Expert opinion on pharmacotherapy, 2012; 13(16): 2397-407. (doi: 10.1517/14656566.2012.732998).
- Xu Z, Shi L, Wang Y, Zhang J, Huang L, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet respiratory medicine, 2020; 8(4): 420-2. (doi: 10.1016/S2213-2600(20)30076-X).
- Yao XH, Li TY, He ZC, Ping YF, Liu HW, Yu SC, et al. A pathological report of three COVID-19 cases by minimally invasive autopsies [in Chinese]. Zhonghua Bing Li Xue Za Zhi 2020; 49: E009.
- Cao Y, Wei J, Zou L, Jiang T, Wang G, et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial. Journal of Allergy and Clinical Immunology. 2020. (doi: 10.1016/j.jaci.2020.05.019).
- Canga AG, Prieto AMS, Liébana MJD, Martínez NF, Vega MS, Vieitez JJG. The pharmacokinetics and interactions of ivermectin in humans—a mini-review. The AAPS journal, 2008; 10(1): 42-6. (doi: 10.1208/s12248-007-9000-9).
- Ottesen EA, Campbell W. Ivermectin in human medicine. Journal of antimicrobial chemotherapy, 1994; 34(2): 195-203. (doi: 10.1093/jac/34.2.195).
- Chaccour C, González Silva M, Rabinovich RN, Ruiz Castillo P. A Roadmap for the Development of Ivermectin as a Complementary Malaria Vector Control Tool. American Journal of Tropical Medicine and Hygiene, 2020; 102(2): 3-24. (doi: 10.4269/ajtmh.19-0620).
- Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral research, 2020: 104787. (doi: 10.1016/j.antiviral.2020.104787).
- Bray M, Rayner C, Noël F, Jans D, Wagstaff K. Ivermectin and COVID-19: a report in Antiviral Research, widespread interest, an FDA warning, two letters to the editor and the authors' responses. Antiviral Research. 2020. (doi: 10.1016/j.antiviral.2020.104805).
- Navarro M, Camprubí D, Requena-Méndez A, Buonfrate D, Giorli G, et al. Safety of high-dose ivermectin: a systematic review and meta-analysis. Journal of Antimicrobial Chemotherapy, 2020; 75(4): 827-34. (doi: 10.1093/jac/dkz524).
- Abdin SM, Elgendy SM, Alyammahi SK, Alhamad W, Omar HA. Jo ur na l P re of. Life Sciences, 2020: 118054. (doi: 10.1016/j.lfs.2020.118054).
- Brattsand R, Linden M. Cytokine modulation by glucocorticoids: mechanisn1s and actions in cellular studies, 1996; 10: 81-90. (doi: 10.1046/j.1365-2036.1996.22164025.x).
- Youssef J, Novosad SA, Winthrop KL. Infection risk and safety of corticosteroid use. Rheumatic Disease Clinics, 2016; 42(1): 157-76. (doi: 10.1016/j.rdc.2015.08.004).
- Jin YH, Cai L, Cheng ZS, Cheng H, Deng T, Fan YP, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Military Medical Research, 2020; 7(1): 4. (doi: 10.1186/s40779-020-0233-6).
- Georgiev T. Coronavirus disease 2019 (COVID-19) and anti-rheumatic drugs. Rheumatol Int, 2020: 1. (doi: 10.1007/s00296-020-04570-z).
- Kakodkar P, Kaka N, Baig MN. A comprehensive literature review on the clinical presentation, and management of the pandemic coronavirus disease 2019 (COVID-19). Cureus, 2020; 12(4). (doi: 10.7759/cureus.7560).
- Saghazadeh A, Rezaei N. Towards treatment planning of COVID-19: Rationale and hypothesis for the use of multiple immunosuppressive agents: Anti-antibodies, immunoglobulins, and corticosteroids. International Immunopharmacology, 2020: 106560. (doi: 10.1016/j.intimp.2020.106560).
- Zhai P, Ding Y, Wu X, Long J, Zhong Y, Li Y. The epidemiology, diagnosis and treatment of COVID-19. International journal of antimicrobial agents, 2020: 105955. (doi: 10.1016/j.ijantimicag.2020.105955).
- Barone JA, Moskovitz BL, Guarnieri J, Hassell AE, Colaizzi JL, Bierman RH, Jessen L. Enhanced bioavailability of itraconazole in hydroxypropylβ-cyclodextrin solution versus capsules in healthy volunteers. Antimicrobial agents and chemotherapy, 1998; 42(7): 1862-5. (doi: 10.1128/AAC.42.7.1862).
- Barchiesi F, Colombo AL, McGough DA, Fothergill AW, Rinaldi MG. In vitro activity of itraconazole against fluconazole-susceptible and-resistant Candida albicans isolates from oral cavities of patients infected with human immunodeficiency virus. Antimicrobial agents and chemotherapy, 1994; 38(7): 1530-3. (doi: 10.1128/AAC.38.7.1530).
- Blatchford NR. Treatment of oral candidosis with itraconazole: a review. Journal of the American Academy of Dermatology, 1990; 23(3): 565-567. (doi: 10.1016/0190-9622(90)70256-H).
- Shim A, Song JH, Kwon BE, Lee JJ, Ahn JH, et al. Therapeutic and prophylactic activity of itraconazole against human rhinovirus infection in a murine model. Scientific reports, 2016; 6: 23110. (doi: 10.1038/srep23110).
- Schloer S, Goretzko J, Kühnl A, Brunotte L, Ludwig S, Rescher U. The clinically licensed antifungal drug itraconazole inhibits influenza virus in vitro and in vivo. Emerging microbes & infections, 2019; 8(1): 80-93. (doi: 10.1080/22221751.2018.1559709).
- AL-Khikani FHO, Hameed RM. COVID-19 treatment: Possible role of itraconazole as new therapeutic option. International Journal of Health & Allied Sciences, 2020; 9(5): 101.
- Nemer G, Khalil A. A Cautious Note on Thalidomide Usage in Cancer Treatment: Genetic Profiling of the TBX2 Sub-Family Gene Expression is Required Authors. 2019; 69(9): 512-8. (doi: 10.1055/a-0873-3529). (doi: 10.1055/a-0873-3529).
- Paravar T, Lee DJ. Thalidomide: mechanisms of action. International reviews of immunology, 2008; 27(3): 111-35. (doi: 10.1080/08830180801911339).
- Chen C, Qi F, Shi K, Li Y, Li J, Chen Y, et al. Thalidomide combined with low-dose glucocorticoid in the treatment of COVID-19 pneumonia. 2020.
- Khalil A, Kamar A, Nemer G. Thalidomide-Revisited: Are COVID-19 Patients Going to Be the Latest Victims of Yet Another Theoretical Drug-Repurposing?. Frontiers in immunology, 2020: 11. (doi: 10.3389/fimmu.2020.01248).
- Shankaranarayana S, Barrett C, Kubler P. The safety of leflunomide. 2013. (doi: 10.18773/austprescr.2013.010).
- Mladenovic V, Domljan Z, Rozman B, Jajic I, Mihajlovic D, et al. Safety and effectiveness of leflunomide in the treatment of patients with active rheumatoid arthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 1995; 38(11): 1595-603. (doi: 10.1002/art.1780381111).
- Cohen S, Cannon GW, Schiff M, Weaver A, Fox R, et al. Two‐year, blinded, randomized, controlled trial of treatment of active rheumatoid arthritis with leflunomide compared with methotrexate. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 2001; 44(9): 1984-92. (doi: 10.1002/1529-0131(200109)44:9<1984::AID-ART346>3.0.CO;2-B).
- Bao C, Chen S, Gu Y, Lao Z, Ni L, et al. Leflunomide, a new disease-modifying drug for treating active rheumatoid arthritis in methotrexate-controlled phase II clinical trial. Chinese medical journal, 2003; 116(8): 1228-34.
- Nash P, Thaçi D, Behrens F, Falk F, Kaltwasser JP. Leflunomide improves psoriasis in patients with psoriatic arthritis: an in-depth analysis of data from the TOPAS study. Dermatology, 2006; 212(3): 238-49. (doi: 10.1159/000091251).
- Hu K, Wang M, Zhao Y, Zhang Y, Wang T, et al. A Small-Scale Medication of Leflunomide as a Treatment of COVID-19 in an Open-Label Blank-Controlled Clinical Trial. Virologica Sinica, 2020: 1-9.
- Xiong R, Zhang L, Li S, Sun Y, Ding M, et al. Novel and potent inhibitors targeting DHODH, a rate-limiting enzyme in de novo pyrimidine biosynthesis, are broad-spectrum antiviral against RNA viruses including newly emerged coronavirus SARS-CoV-2. BioRxiv. 2020. (doi: 10.1101/2020.03.11.983056).
- Wang Q, Guo H, Li Y, Jian X, Hou X, et al. Efficacy and Safety of Leflunomide for Refractory COVID-19: An Open-label Controlled Study. medRxiv. 2020. (doi: 10.1101/2020.05.29.20114223).
- Nishimoto N, Kishimoto T. Humanized antihuman IL-6 receptor antibody, tocilizumab. In Therapeutic Antibodies (pp. 151-160). Springer, Berlin, Heidelberg. 2008. (doi: 10.1007/978-3-540-73259-4_7).
- Xu X, Han M, Li T, Sun W, Wang D, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proceedings of the National Academy of Sciences, 2020; 117(20): 10970-5. (doi: 10.1073/pnas.2005615117).
- Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J. Tocilizumab treatment in COVID-19: A single center experience. Journal of medical virology, 2020; 92(7): 814-8. (doi: 10.1002/jmv.25801).
- Mease PJ, Gottlieb AB, Berman A, Drescher E, Xing J, Wong R, Banerjee S. The efficacy and safety of clazakizumab, an anti-interleukin‐6 monoclonal antibody, in a phase IIb study of adults with active psoriatic arthritis. Arthritis & rheumatology, 2016; 68(9): 2163-2173. (doi: 10.1002/art.39700).
- Chakraborty C, Sharma AR, Bhattacharya M, Sharma G, Lee SS, Agoramoorthy G. COVID-19: Consider IL6 receptor antagonist for the therapy of cytokine storm syndrome in SARS-CoV-2 infected patients. Journal of Medical Virology. 2020. (doi: 10.1002/jmv.26078).
- Gupta S, Weitzman S. Primary and secondary hemophagocytic lymphohistiocytosis: clinical features, pathogenesis and therapy. Expert review of clinical immunology, 2010; 6(1): 137-54. (doi: 10.1586/eci.09.58).
- Nishimoto N, Kishimoto T, Yoshizaki K. Anti-interleukin 6 receptor antibody treatment in rheumatic disease. Annals of the rheumatic diseases, 2000; 59(suppl 1): i21-i27. (doi: 10.1136/ard.59.suppl_1.i21).
- Paquette SG, Banner D, Zhao Z, Fang Y, Huang SS, et al. Interleukin-6 is a potential biomarker for severe pandemic H1N1 influenza A infection. PloS one, 2012; 7(6): e38214. (doi: 10.1371/journal.pone.0038214).
- Liu T, Zhang J, Yang Y, Ma H, Li Z, et al. The role of interleukin‐6 in monitoring severe case of coronavirus disease 2019. EMBO Molecular Medicine. 2020. (doi: 10.15252/emmm.202012421).
- Eskandary F, Dürr M, Budde K, Doberer K, Reindl-Schwaighofer R, Waiser J, et al. Clazakizumab in late antibody-mediated rejection: study protocol of a randomized controlled pilot trial. Trials, 2019; 20(1): 1-13. (doi: 10.1186/s13063-018-3158-6).
- Jordan SC. A phase II trial to evaluate the safety and tolerability of Clazakizumab(anti-IL- 6 monoclonal) compared to placebo for the treatment of COVID-19 infection 2020. https://clinicaltrials.gov/ct2/show/study/NCT04348500 (Accessed: 5 June 2020).
- Lonze B. A randomized placebo-controlled safety and dosefinding study for the use of the IL-6 inhibitor clazakizumab in patients with life-threatening COVID-19 infection 2020. https://clinicaltrials.gov/ct2/show/record/NCT04343989 (Accessed: 6 May 2020).
- Vaidya G, Czer LS, Kobashigawa J, Kittleson M, Patel J, et al. Successful treatment of severe COVID-19 pneumonia with clazakizumab in a heart transplant recipient: case report. In Transplantation Proceedings. 2020, June. (doi: 10.1016/j.transproceed.2020.06.003).
- Krishna K, Dasgupta N, Das G. (Can BCG vaccination induced immune programming reduce the mortality in COVID- 19 caused by SARS Cov2? 2020.
- Miller A, Reandelar MJ, Fasciglione K, Roumenova V, Li Y, Otazu GH. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. MedRxiv. 2020. (doi: 10.1101/2020.03.24.20042937).
- Welsh RM, Che JW, Brehm MA, Welsh RM. Heterologous immunity between viruses, 2010; 235: 244-66. (doi: 10.1111/j.0105-2896.2010.00897.x).
- Kleinnijenhuis J, Quintin J, Preijers F, Benn CS, Joosten LA, et al. Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. Journal of innate immunity, 2014; 6(2): 152-8. (doi: 10.1159/000355628).
- Dicks MD, Spencer AJ, Edwards NJ, Wadell G, Bojang K, et al. A novel chimpanzee adenovirus vector with low human seroprevalence: improved systems for vector derivation and comparative immunogenicity. PloS one, 2012; 7(7): e40385. (doi: 10.1371/journal.pone.0040385).
- van Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham JN, et al. ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. bioRxiv. 2020. (doi: 10.1101/2020.05.13.093195).
- Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. The Lancet. 2020.
- FitzGerald GA. Dipyridamole. New England Journal of Medicine, 1987; 316(20): 1247-57. (doi: 10.1056/NEJM198705143162005).
- Gresele P, Momi S, Falcinelli E. Anti‐platelet therapy: phosphodiesterase inhibitors. British journal of clinical pharmacology, 2011; 72(4): 634-46. (doi: 10.1111/j.1365-2125.2011.04034.x).
- Fata-Hartley CL, Palmenberg AC. Dipyridamole reversibly inhibits mengovirus RNA replication. Journal of virology, 2005; 79(17): 11062-70. (doi: 10.1128/JVI.79.17.11062-11070.2005).
- Liu X, Li Z, Liu S, Sun J, Chen Z, et al. Potential therapeutic effects of dipyridamole in the severely ill patients with COVID-19. Acta Pharmaceutica Sinica B. 2020. (doi: 10.1016/j.apsb.2020.04.008).
- Hemilä H, Chalker E. Vitamin C as a possible therapy for COVID-19. Infection & chemotherapy. 2020. (doi: 10.3947/ic.2020.52.2.222).
- Linster CL, Van Schaftingen E. Vitamin c. The FEBS journal, 2007; 274(1): 1-22. (doi: 10.1111/j.1742-4658.2006.05607.x).
- Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane database of systematic reviews, 2013; (1). (doi: 10.1002/14651858.CD000980.pub4).
- Hemilä H, Chalker E. Vitamin C can shorten the length of stay in the ICU: a meta-analysis. Nutrients, 2019; 11(4): 708. (doi: 10.3390/nu11040708).
- Carr AC, Rosengrave PC, Bayer S, Chambers S, Mehrtens J, Shaw GM. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Critical Care, 2017; 21(1): 1-10. (doi: 10.1186/s13054-017-1891-y).
- Levine M, Conry-Cantilena C, Wang Y, Welch RW, et al. Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proceedings of the National Academy of Sciences, 1996; 93(8): 3704-9. (doi: 10.1073/pnas.93.8.3704).
- Kim SB, Huh K, Heo JY, Joo EJ, Kim YJ, et al. Interim guidelines on antiviral therapy for COVID-19. Infection & Chemotherapy, 2020: 52. (doi: 10.3947/ic.2020.52.2.281).
- Allegra A, Di Gioacchino M, Tonacci A, Musolino C, Gangemi S. Immunopathology of SARS-CoV-2 Infection: Immune Cells and Mediators, Prognostic Factors, and Immune-Therapeutic Implications. International Journal of Molecular Sciences, 2020; 21(13): 4782. (doi: 10.3390/ijms21134782).
- Shaikh K, Shrestha C, Dutta D. Treatment options in people with COVID-19: Selecting the best armamentarium against the novel virus. JPMA. The Journal of the Pakistan Medical Association, 2020; 70(5): S69-S73. (doi: 10.5455/JPMA.22).
- Huang H, Hu PF, Sun LL, Guo YB, Wang Q, et al. Treatment of COVID-19 Patients with High Dose of Ulinastatin. 2020. (doi: 10.21203/rs.3.rs-32627/v1).
- Zhao M. Cytokine storm and immunomodulatory therapy in COVID-19: role of chloroquine and anti-IL-6 monoclonal antibodies. International journal of antimicrobial agents. 2020. (doi: 10.1016/j.ijantimicag.2020.105982).
- George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. The Lancet Respiratory Medicine. 2020. (doi: 10.1016/S2213-2600(20)30225-3).
- Marini JJ, Gattinoni L. Management of COVID-19 respiratory distress. Jama. 2020. (doi: 10.1001/jama.2020.6825).
- Seifirad S. Pirfenidone: A novel hypothetical treatment for COVID-19. Medical hypotheses, 2020: 110005. (doi: 10.1016/j.mehy.2020.110005).
- Ferrara F, Granata G, Pelliccia C, La Porta R, Vitiello A. The added value of pirfenidone to fight inflammation and fibrotic state induced by SARS-CoV-2. European Journal of Clinical Pharmacology, 2020: 1-4. (doi: 10.1007/s00228-020-02947-4).
- Ben-Zvi I, Kivity S, Langevitz P, Shoenfeld Y. Hydroxychloroquine: from malaria to autoimmunity. Clinical reviews in allergy & immunology, 2012; 42(2): 145-53. (doi: 10.1007/s12016-010-8243-x).
- Dunn CJ, Barradell LB. Azithromycin. Drugs, 1996; 51(3): 483-505. (doi: 10.2165/00003495-199651030-00013).
- Rosenberg ES, Dufort EM, Udo T, Wilberschied LA, Kumar J, et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York state. Jama. 2020. (doi: 10.1001/jama.2020.8630).
- Bacharier LB, Guilbert TW, Mauger DT, Boehmer S, Beigelman A, et al. Early administration of azithromycin and prevention of severe lower respiratory tract illnesses in preschool children with a history of such illnesses: a randomized clinical trial. Jama, 2015; 314(19): 2034-44. (doi: 10.1001/jama.2015.13896).
- Bosseboeuf E, Aubry M, Nhan T, De Pina JJ, Rolain JM, Raoult D, Musso D. Azithromycin inhibits the replication of Zika virus. J Antivirals Antiretrovirals, 2018; 10(1): 6-11. (doi: 10.4172/1948-5964.1000173).
- Madrid PB, Panchal RG, Warren TK, Shurtleff AC, et al. Evaluation of Ebola virus inhibitors for drug repurposing. ACS infectious diseases, 2015; 1(7): 317-26. (doi: 10.1021/acsinfecdis.5b00030).
- Retallack H, Di Lullo E, Arias C, Knopp KA, Laurie MT, et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proceedings of the National Academy of Sciences, 2016; 113(50): 14408-13. (doi: 10.1073/pnas.1618029113).
- Ōmura S, Crump A. Ivermectin: panacea for resource-poor communities?. Trends in parasitology, 2014; 30(9): 445-55. (doi: 10.1016/j.pt.2014.07.005).
- Sperber K, Louie M, Kraus T, Proner J, Sapira E, et al. Hydroxychloroquine treatment of patients with human immunodeficiency virus type 1. Clinical therapeutics, 1995; 17(4): 622-36. (doi: 10.1016/0149-2918(95)80039-5).
- Zhou D, Dai SM, Tong Q. COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. Journal of Antimicrobial Chemotherapy. 2020. (doi: 10.1093/jac/dkaa114).
- Lv C, Liu W, Wang B, Dang R, Qiu L, et al. Ivermectin inhibits DNA polymerase UL42 of pseudorabies virus entrance into the nucleus and proliferation of the virus in vitro and vivo. Antiviral research, 2018; 159: 55-62. (doi: 10.1016/j.antiviral.2018.09.010).
- Patrì A, Fabbrocini G. Hydroxychloroquine and ivermectin: A synergistic combination for COVID-19 chemoprophylaxis and treatment?. Journal of the American Academy of Dermatology, 2020; 82(6): e221. (doi: 10.1016/j.jaad.2020.04.017).
- Chu CM, Cheng VCC, Hung IFN, Wong MML, Chan KH, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax, 2004; 59(3): 252-6. (doi: 10.1136/thorax.2003.012658).
- Chen F, Chan KH, Jiang Y, Kao RYT, Lu HT, et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. Journal of Clinical Virology, 2004; 31(1): 69-75. (doi: 10.1016/j.jcv.2004.03.003).
- Wu CY, Jan JT, Ma SH, Kuo CJ, Juan HF, et al. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proceedings of the National Academy of Sciences, 2004; 101(27): 10012-7. (doi: 10.1073/pnas.0403596101).
- De Wilde AH, Jochmans D, Posthuma CC, Zevenhoven-Dobbe JC, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrobial agents and chemotherapy, 2014; 58(8): 4875-84. (doi: 10.1128/AAC.03011-14).
- Chan JFW, Yao Y, Yeung ML, Deng W, Bao L, Jia L, et al. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. The Journal of infectious diseases, 2015; 212(12): 1904-13. (doi: 10.1093/infdis/jiv392).
- Kim UJ, Won EJ, Kee SJ, Jung SI, Jang HC. Case report Combination therapy with lopinavir/ritonavir, ribavirin and interferon-α for Middle East respiratory syndrome. Antiviral therapy, 2016; 21: 455-9. (doi: 10.3851/IMP3002).
- Spanakis N, Tsiodras S, Haagmans BL, Raj VS, Pontikis K, et al. Virological and serological analysis of a recent Middle East respiratory syndrome coronavirus infection case on a triple combination antiviral regimen. International journal of antimicrobial agents, 2014; 44(6): 528-32. (doi: 10.1016/j.ijantimicag.2014.07.026).
- Min CK, Cheon S, Ha NY, Sohn KM, Kim Y, Aigerim A, et al. Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity. Scientific reports, 2016; 6(1): 1-12. (doi: 10.1038/srep25359).
- Cao B, Wang Y, Wen D, Liu W, Wang J, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. New England Journal of Medicine. 2020.
- Rojas M, Rodríguez Y, Monsalve DM, Acosta-Ampudia Y, Camacho B, et al. Convalescent plasma in COVID-19: Possible mechanisms of action. Autoimmunity Reviews, 2020: 102554. (doi: 10.1016/j.autrev.2020.102554).
- Coughlin MM, Prabhakar BS. Neutralizing human monoclonal antibodies to severe acute respiratory syndrome coronavirus: target, mechanism of action, and therapeutic potential. (September 2011), 2012: 2-17. (doi: 10.1002/rmv.706).
- Dhama K, Sharun K, Tiwari R, Dadar M, Malik YS, Singh KP, Chaicumpa W. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Human vaccines & immunotherapeutics, 2020: 1-7. (doi: 10.1080/21645515.2020.1735227).
- Jiang S, Hillyer C, Du L. Neutralizing Antibodies against SARS-CoV-2 and Other Human Coronaviruses. Trends in Immunology. The Author(s), 2020; 41(5): 355-9. (doi: 10.1016/j.it.2020.03.007).
- Roback JD, Guarner J. Convalescent Plasma to Treat COVID-19 Possibilities and Challenges. 2020: 27-8. (doi: 10.1111/trf.15739).
- Duan K, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proceedings of the National Academy of Sciences of the United States of America, 2020; 117(17): 9490-6. (doi: 10.1073/pnas.2004168117).
- Atluri S, Manchikanti L, Hirsch JA. Expanded umbilical cord mesenchymal stem cells (UC-MSCs) as a therapeutic strategy in managing critically ILL COVID-19 patients: The case for compassionate use. Pain Physician, 2020; 23(2): E71-E84.
- Alcayaga-Miranda F, Cuenca J, Khoury M. Antimicrobial activity of mesenchymal stem cells: Current status and new perspectives of antimicrobial peptide-based therapies. Frontiers in Immunology, 2017; 8(MAR): 1-15. (doi: 10.3389/fimmu.2017.00339).
- Zhang Y, Ding J, Ren S, Wang W, Yang Y, et al. Intravenous infusion of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells as a potential treatment for patients with COVID-19 pneumonia. Stem Cell Research & Therapy, 2020; 11(1): 1-6. (doi: 10.24966/SRDT-2060/100047).
- Khaerunnisa S, Kurniawan H, Awaluddin R, Suhartati S, Soetjipto S. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Prepr. 2020: 1-14. (doi: 10.20944/preprints202003.0226.v1).
- Wahedi HM, Ahmad S, Abbasi SW. Stilbene-based natural compounds as promising drug candidates against COVID-19. Journal of Biomolecular Structure and Dynamics, 2020: 1-10. (doi: 10.1080/07391102.2020.1762743).
- Nascimento Junior JAC, Santos AM, Quintans-Júnior LJ, Walker CIB, Borges LP, Serafini MR. SARS, MERS and SARS-CoV-2 (COVID-19) treatment: a patent review. Expert Opinion on Therapeutic Patents, 2020; 30(8): 567-79. (doi: 10.1080/13543776.2020.1772231).
- Yang Y, Islam MS, Wang J, Li Y, Chen X. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): a review and perspective. International journal of biological sciences, 2020; 16(10): 1708. (doi: 10.7150/ijbs.45538).
How to cite this article
APA
Islam, S. S., Alam, S., Rajib, T. K., Akhter, N., & Islam, M. Z. (2021). A Generalized Overview of the Possible Pharmacotherapy and Treatments against SARS-CoV-2. Journal of Contemporary Studies in Epidemiology and Public Health, 2(1), ep21001. https://doi.org/10.30935/jconseph/9367
Vancouver
Islam SS, Alam S, Rajib TK, Akhter N, Islam MZ. A Generalized Overview of the Possible Pharmacotherapy and Treatments against SARS-CoV-2. J CONTEMP STUD EPIDEMIOL PUBLIC HEALTH. 2021;2(1):ep21001. https://doi.org/10.30935/jconseph/9367
AMA
Islam SS, Alam S, Rajib TK, Akhter N, Islam MZ. A Generalized Overview of the Possible Pharmacotherapy and Treatments against SARS-CoV-2. J CONTEMP STUD EPIDEMIOL PUBLIC HEALTH. 2021;2(1), ep21001. https://doi.org/10.30935/jconseph/9367
Chicago
Islam, Syed Sajidul, Sayka Alam, Tiluttoma Khan Rajib, Nasrin Akhter, and Md. Zahidul Islam. "A Generalized Overview of the Possible Pharmacotherapy and Treatments against SARS-CoV-2". Journal of Contemporary Studies in Epidemiology and Public Health 2021 2 no. 1 (2021): ep21001. https://doi.org/10.30935/jconseph/9367
Harvard
Islam, S. S., Alam, S., Rajib, T. K., Akhter, N., and Islam, M. Z. (2021). A Generalized Overview of the Possible Pharmacotherapy and Treatments against SARS-CoV-2. Journal of Contemporary Studies in Epidemiology and Public Health, 2(1), ep21001. https://doi.org/10.30935/jconseph/9367
MLA
Islam, Syed Sajidul et al. "A Generalized Overview of the Possible Pharmacotherapy and Treatments against SARS-CoV-2". Journal of Contemporary Studies in Epidemiology and Public Health, vol. 2, no. 1, 2021, ep21001. https://doi.org/10.30935/jconseph/9367